28 research outputs found

    Distributed Reasoning in a Peer-to-Peer Setting: Application to the Semantic Web

    Full text link
    In a peer-to-peer inference system, each peer can reason locally but can also solicit some of its acquaintances, which are peers sharing part of its vocabulary. In this paper, we consider peer-to-peer inference systems in which the local theory of each peer is a set of propositional clauses defined upon a local vocabulary. An important characteristic of peer-to-peer inference systems is that the global theory (the union of all peer theories) is not known (as opposed to partition-based reasoning systems). The main contribution of this paper is to provide the first consequence finding algorithm in a peer-to-peer setting: DeCA. It is anytime and computes consequences gradually from the solicited peer to peers that are more and more distant. We exhibit a sufficient condition on the acquaintance graph of the peer-to-peer inference system for guaranteeing the completeness of this algorithm. Another important contribution is to apply this general distributed reasoning setting to the setting of the Semantic Web through the Somewhere semantic peer-to-peer data management system. The last contribution of this paper is to provide an experimental analysis of the scalability of the peer-to-peer infrastructure that we propose, on large networks of 1000 peers

    On Tackling the Limits of Resolution in SAT Solving

    Full text link
    The practical success of Boolean Satisfiability (SAT) solvers stems from the CDCL (Conflict-Driven Clause Learning) approach to SAT solving. However, from a propositional proof complexity perspective, CDCL is no more powerful than the resolution proof system, for which many hard examples exist. This paper proposes a new problem transformation, which enables reducing the decision problem for formulas in conjunctive normal form (CNF) to the problem of solving maximum satisfiability over Horn formulas. Given the new transformation, the paper proves a polynomial bound on the number of MaxSAT resolution steps for pigeonhole formulas. This result is in clear contrast with earlier results on the length of proofs of MaxSAT resolution for pigeonhole formulas. The paper also establishes the same polynomial bound in the case of modern core-guided MaxSAT solvers. Experimental results, obtained on CNF formulas known to be hard for CDCL SAT solvers, show that these can be efficiently solved with modern MaxSAT solvers

    SomeWhere in the semantic web

    No full text
    Abstract. In this paper, we describe the SomeWhere semantic peerto-peer data management system that promotes a ”small is beautiful” vision of the Semantic Web based on simple personalized ontologies (e.g., taxonomies of classes) but which are distributed at a large scale. In this vision of the Semantic Web, no user imposes to others his own ontology. Logical mappings between ontologies make possible the creation of a web of people in which personalized semantic marking up of data cohabits nicely with a collaborative exchange of data. In this view, the Web is a huge peer-to-peer data management system based on simple distributed ontologies and mappings.

    1 Introduction Distributed Reasoning in a Peer-to-Peer Setting

    No full text
    In a peer-to-peer system, there is no centralized control or hierarchical organization: each peer is equivalent in functionality and cooperate

    Distributed reasoning in a peer-to-peer setting

    No full text
    Abstract. In a peer-to-peer inference system, each peer can reason locally but can also solicit some of its acquaintances, which are peers sharing part of its vocabulary. In this paper, we consider peerto-peer inference systems in which the local theory of each peer is a set of propositional clauses defined upon a local vocabulary. An important characteristic of peer-to-peer inference systems is that the global theory (the union of all peer theories) is not known (as opposed to partition-based reasoning systems). The contribution of this paper is twofold. We provide the first consequence finding algorithm in a peer-to-peer setting: it is anytime and computes consequences gradually from the solicited peer to peers that are more and more distant. We exhibit a sufficient condition on the acquaintance graph of the peer-to-peer inference system for guaranteeing the completeness of this algorithm. We also present first experimental results that are promising.

    General Terms

    No full text
    In this paper, we describe the SomeWhere semantic peerto-peer data management system and report experiments showing that it already scales up to a thousand of peers. SomeWhere promotes a ”small is beautiful ” vision of the Semantic Web based on simple personalized ontologies (e.g., taxonomies of classes) but which are distributed at a large scale. In this vision of the Semantic Web, no user imposes to others his own ontology. Logical mappings between ontologies make possible the creation of a web of people in which personalized semantic marking up of data cohabits nicely with a collaborative exchange of data. In this view, the Web is a huge peer-to-peer data management system based on simple distributed ontologies and mappings

    Effective preprocessing in SAT through variable and clause elimination

    No full text
    Abstract. Preprocessing SAT instances can reduce their size considerably. We combine variable elimination with subsumption and selfsubsuming resolution, and show that these techniques not only shrink the formula further than previous preprocessing efforts based on variable elimination, but also decrease runtime of SAT solvers substantially for typical industrial SAT problems. We discuss critical implementation details that make the reduction procedure fast enough to be practical.
    corecore